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Abstract— In this paper we derive a transient anal-
ysis formulation that can be used in conjunction with
wavelets or time-marching methods. The number of un-
knowns in the formulation is proportional to the number
of state variables of the nonlinear devices in the circuit.
The formulation was implemented in a general circuit
simulator. We evaluate the numerical performance of
transient analysis using wavelets and the backward Euler
method by simulating a nonlinear transmission line and
a quasi-optical grid amplifier. The quasi-optical example
illustrates the integration of full-wave electromagnetic
analysis in transient circuit simulation.

I. Introduction

The essence of transient simulation of circuits is solv-
ing a system of coupled algebraic and ordinary differ-
ential equations. Circuit simulators convert this system
into a nonlinear algebraic system of equations. In con-
ventional simulation techniques the number of nonlin-
ear unknowns is approximately equal to the number of
nodes in the circuit. Circuit simulation methods based
on the state variables of the nonlinear devices allow the
analysis of circuits with the minimum number of un-
knowns and error functions. This approach has several
advantages. In microwave circuits, the resulting sys-
tem of nonlinear equations is generally much smaller
than the nonlinear system resulting from applying con-
ventional formulations. Another advantage is the ro-
bustness and flexibility provided by the state-variable
approach [1].

Multiresolution analysis has been used with a wide
variety of modeling problems including signal process-
ing and electromagnetics. Zhou et al. presented a
pseudo-wavelet collocation method applied to the tran-
sient simulation of circuits [2, 3]. In Reference [4]
we used this collocation method to derive the state-
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variable-based transient analysis. The analysis is im-
plemented in our circuit simulator, Transim [5].

We first review and expand the formulation of the
transient analysis of Reference [4] in Section II. Al-
though our formulation was originally developed to be
used with wavelet transformations, it can also be used
with implicit time-marching methods. As an example,
we derive a state-variable-based transient analysis using
the Backward Euler (BE) formula by just replacing two
matrices in the wavelet formulation. In Section III the
numerical performance of the transient analysis using
wavelets and the BE method is evaluated by simulating
a nonlinear transmission line and a quasi-optical grid
amplifier.

II. Formulation of the Transient Analysis

Given a function g(t) defined in an interval I = [0, L],
where L is an integer number, the following square ma-
trices W and W′ are defined [4, 6]:

g = WĝJ , g′ = W′ĝJ , (1)

where g, g′ are vectors whose elements are the function
and derivatives values, respectively, at the collocation
points and ĝJ is the vector of the corresponding coeffi-
cients. J is the maximum subspace level being consid-
ered. Fig. 1 shows the nonzero structure of W and W′

for the particular wavelet basis functions used in this
work.

The final linear circuit equation, from [4], is

MJ ûJ = sf,J + T1,J iNL,J(x̂J ), (2)

where ûJ is the vector of wavelet coefficients of the
nodal voltages and selected currents, x̂J is the vec-
tor with wavelet coefficients of the state variables of
the nonlinear devices, sf,J is the vector of independent
sources, the matrix T1,J is defined in [4] and iNL,J(x̂J )
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Fig. 1. Representation of the nonzero elements of the transfor-
mation matrices for L = 10 and J = 2: (a) W and (b) W′.

is the vector of currents at the nonlinear device ports.
The error function F(x̂J ) is defined as

F(x̂J ) = T2,J ûJ − vNL,J(x̂J ) = 0,

where T2,J is a matrix defined in [4] and vNL,J(x̂J )
is the vector of voltages at the nonlinear device ports.
Combining the preceding with (2),

F(x̂J ) = T2,JM−1
J sf,J

+T2,JM−1
J T1,J iNL,J(x̂J )− vNL,J(x̂J ).

By defining the compressed source vector ssv,J =
T2,JM−1

J sf,J and the compressed impedance matrix
Msv,J = T2,JM−1

J T1,J , we can express the error func-
tion as

F(x̂J ) = ssv,J +Msv,J iNL,J(x̂J )−vNL,J(x̂J ) = 0. (3)

The initial conditions of the entire linear subcircuit are
embedded in ssv,J . The system of nonlinear algebraic
equations (3) is solved using a globally convergent quasi-
Newton method. The size of Msv,J is (m−1)ns× (m−
1)ns, wherem is the number of collocation points. If the
time interval to be simulated requires many collocation
points, the nonlinear system to be solved becomes very
large. One way to overcome this problem is to divide
the total simulation time interval into smaller windows.
Then solve one time window at a time. The final time
sample at each window becomes the initial condition for
the next and the method is applied for all windows.

A. Initial Conditions in the State Variables

The wavelet coefficients of each state variable are not
completely independent. There is a constraint imposed
by the initial condition of the transient analysis. There-
fore, the first transform coefficient is excluded from the
unknowns. Given the initial condition x0 and the re-
maining coefficients x̂, it is possible to obtain the vector

of the remaining time samples x as follows

x = (Wr −
wc0

w0,0
wr0)x̂ +

wc0

w0,0
x0,

where Wr is equal to W reduced by the first row and
column, wc0 and wr0 are the first column and row of
W, respectively, excluding the first element w0,0.

A similar expression can be obtained for x′, namely

x′ = (W′
r −

w′c0
w0,0

wr0)x̂ +
w′c0
w0,0

x0.

Higher order derivatives were not used in the present
work.

B. Alternative Formulations

An alternative to the transient formulation is to
express the nonlinear error function in terms of the
wavelet coefficients of the port voltages. This yields a
similar error function where vNL,J(x̂J ) must be trans-
formed from the physical to the coefficient space (us-
ing W−1). At first, this approach would seem to be
less efficient because it requires the implementation of
inverse wavelet transformation. Nevertheless, this ap-
proach would allow the reduction of the linear system
size if some coefficients of the port voltages are known
to be zero. This can not be done in the physical space.

Other types of analysis can be derived by modify-
ing our transient formulation. For example, by replac-
ing the equations relating the transient initial condi-
tions with certain boundary conditions we can obtain
a formulation for the periodic steady-state of a circuit.
These alternatives will not be developed here.

C. Transient Using the Backward Euler Formula

The formulation presented in this paper can be ap-
plied not only with wavelet transformations but also
with other transformations as well. In particular, some
implicit time marching methods can be implemented. If
the transformation matrices in (1) are defined as follows

W =

[
1 0
1 1

]
and W′ =

[
0 1
0 1

]
, (4)

then the preceding derivation becomes a formulation for
a state-variable-based transient analysis using the BE
formula. In this case the linear system to be solved is
twice as large as the original MNAM (because the trans-
formations matrices are 2×2) and the size of the nonlin-
ear system resulting from (3) is equal to the number of
state variables. Multi-step time-marching schemes can
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also be implemented by choosing adequate W and W′

and introducing some minor variations in the formula-
tion.

III. Simulation Results and Discussion

In the following we compare the performance of the
transient analysis in Transim using wavelets and the
BE formula. Wavelet transient analysis was imple-
mented first. To implement the BE transient analy-
sis, we modified W and W′ in the wavelet transient
analysis in Transim to use the definition in (4). The
rest of the program was unchanged. The purpose of
this was to demonstrate the generality of the formula-
tion and to compare the two transient analysis meth-
ods using almost exactly the same code. Note how-
ever that in general it is not practical to use (3) with
time-marching methods because formulations that are
simpler and more efficient exist as the authors show in
Chapter 6 of Reference [6].

A. Nonlinear Transmission Line

The wavelet transient analysis in Transim was vali-
dated with the comparison of the simulation results of
a 47-section nonlinear transmission line with the results
of a Spice simulation [4]. The same wavelet transient
simulation is compared here with a BE transient simu-
lation.

Fig. 2 shows the simulated voltage of the diode near
the load using wavelet transient and backward Euler.
Table I compares key simulation parameters. The BE
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Fig. 2. Comparison of the voltage of the diode close to the load
(diode 47) of the nonlinear transmission line.

method is known to introduce numerical damping [7].

Despite the large number of time samples used in BE
transient to minimize this effect, the numerical damp-
ing is still noticeable in Fig. 2. This does not occur
when using trapezoidal integration [4,6]. Although this

TABLE I

Comparison of Spice and wavelet transient simulations of

the first 400 ps transient response of the soliton line.

Wavelets B. Euler
Time (minutes) 50 17
Memory (MB) 41 56
Scalar Unknowns 564 47
Windows / Time Samples 94 40000

implementation of a time marching transient analysis
is inefficient, it is several times faster than the simu-
lation using wavelets. This is because the solution of
the nonlinear system in wavelet transient presents two
problems: the initial guess in the Newton method is
not close to the solution and the number of nonlinear
unknowns grows quickly with the window resolution de-
spite the state-variable reduction. If the circuit being
simulated has a periodic excitation, the first problem
can be addressed by choosing the time window size to
be equal to the period. Then the solution for a given
time window can be used as a good guess for the solu-
tion at the next window. Unfortunately, for this circuit
this approach implies a time window too large to be to
be handled efficiently. The second problem can be al-
leviated by using an adaptive scheme to eliminate the
coefficients that are known to be zero from the list of
unknowns.

B. Grid Amplifier

We evaluate the turn-on transient of a quasi-optical
grid amplifier system [8]. The grid structure was mod-
eled using a MOM field simulator [9] to generate the
multi-port admittance matrix and excitation currents
for the grid structure. To use this data in a time domain
analysis such as wavelet or BE transient, the frequency-
defined parameters are first approximated by a rational
transfer function [6].

The transient simulation of the grid amplifier using
convolution was presented in Reference [10]. The initial
transient is given in Fig. 3. The microwave excitation is
applied at t = 2 ns. Note the two different convolution
results. If the convolution analysis is performed using
the pole-zero model of the grid, the agreement with the
other transient simulations is much better. This sug-
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TABLE II

Comparison times of the different simulation methods

Description Convolution Wavelets Backward Euler
(hh:mm:ss) (hh:mm:ss) (hh:mm:ss)

Bias-on (12 µs) 16:15:00 00:00:37 00:00:48
Bias + Excitation (4 µs) - 18:24:00 05:16:00
Bias + Excitation (4 ns) 00:09:34 00:04:40 00:00:18
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Fig. 3. Transient response at one of the MMIC output

gests that the pole-zero model should be improved. A
comparison of the run times for this and other simu-
lations of the grid amplifier is given in Table II. Con-
volution transient is always the slowest method. Nev-
ertheless, this method can potentially achieve the best
accuracy. BE transient is generally the fastest method.
However, sometimes transient analysis using wavelets
can be faster as shown in the Bias-on simulation in Ta-
ble II. For very long transient simulations, the only vi-
able alternative to perform the transient analysis seems
to be the approximation of the grid network parame-
ters using rational functions. It should be noted that
this example includes the incorporation of a full-wave
electromagnetic analysis into a transient simulator. Of
significance is that the electromagnetic environment is
critical to operation and does not represent a circuit
parasitic.

IV. Conclusions

Transim is, to the knowledge of the authors, the most
advanced wavelet-based nonlinear circuit simulator de-

veloped to date1. The simulation examples presented
here are the most complex circuits ever simulated us-
ing wavelets. The simulation results show that time
marching transient is faster than wavelet transient with
fixed resolution. More research is required before cir-
cuit simulation techniques using wavelets can be more
efficient than time-marching techniques. In particular
the implementation of dynamic variation of resolution
including variable resolution at different circuit nodes
is required.
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